Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Clin Genet ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604781

RESUMO

CTNND2 encodes δ-catenin, a component of an adherens junction complex, and plays an important role in neuronal structure and function. To date, only heterozygous loss-of-function CTNND2 variants have been associated with mild neurodevelopmental delay and behavioral anomalies, a condition, which we named Rauch-Azzarello syndrome. Here, we report three siblings of a consanguineous family of Syrian descent with a homozygous deletion encompassing the last 19 exons of CTNND2 predicted to disrupt the transcript. All presented with severe neurodevelopmental delay with absent speech, profound motor delay, stereotypic behavior, microcephaly, short stature, muscular hypotonia with lower limb hypertonia, and variable eye anomalies. The parents and the fourth sibling were heterozygous carriers of the deletion and exhibited mild neurodevelopmental impairment resembling that of the previously described heterozygous individuals. The present study unveils a severe manifestation of CTNND2-associated Rauch-Azzarello syndrome attributed to biallelic loss-of-function aberrations, clinically distinct from the already described mild presentation of heterozygous individuals. Furthermore, we demonstrate novel clinical features in homozygous individuals that have not been reported in heterozygous cases to date.

2.
J Autoimmun ; 144: 103183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401466

RESUMO

Chronic nonbacterial osteomyelitis (CNO), an autoinflammatory bone disease primarily affecting children, can cause pain, hyperostosis and fractures, affecting quality-of-life and psychomotor development. This study investigated CNO-associated variants in P2RX7, encoding for the ATP-dependent trans-membrane K+ channel P2X7, and their effects on NLRP3 inflammasome assembly. Whole exome sequencing in two related transgenerational CNO patients, and target sequencing of P2RX7 in a large CNO cohort (N = 190) were conducted. Results were compared with publicly available datasets and regional controls (N = 1873). Findings were integrated with demographic and clinical data. Patient-derived monocytes and genetically modified THP-1 cells were used to investigate potassium flux, inflammasome assembly, pyroptosis, and cytokine release. Rare presumably damaging P2RX7 variants were identified in two related CNO patients. Targeted P2RX7 sequencing identified 62 CNO patients with rare variants (32.4%), 11 of which (5.8%) carried presumably damaging variants (MAF <1%, SIFT "deleterious", Polyphen "probably damaging", CADD >20). This compared to 83 of 1873 controls (4.4%), 36 with rare and presumably damaging variants (1.9%). Across the CNO cohort, rare variants unique to one (Median: 42 versus 3.7) or more (≤11 patients) participants were over-represented when compared to 190 randomly selected controls. Patients with rare damaging variants more frequently experienced gastrointestinal symptoms and lymphadenopathy while having less spinal, joint and skin involvement (psoriasis). Monocyte-derived macrophages from patients, and genetically modified THP-1-derived macrophages reconstituted with CNO-associated P2RX7 variants exhibited altered potassium flux, inflammasome assembly, IL-1ß and IL-18 release, and pyroptosis. Damaging P2RX7 variants occur in a small subset of CNO patients, and rare P2RX7 variants may represent a CNO risk factor. Observations argue for inflammasome inhibition and/or cytokine blockade and may allow future patient stratification and individualized care.


Assuntos
Inflamassomos , Osteomielite , Criança , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Piroptose , Osteomielite/genética , Citocinas , Potássio , Receptores Purinérgicos P2X7/genética
3.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873414

RESUMO

Psoriasis is a common, debilitating immune-mediated skin disease. Genetic studies have identified biological mechanisms of psoriasis risk, including those targeted by effective therapies. However, the genetic liability to psoriasis is not fully explained by variation at robustly identified risk loci. To move towards a saturation map of psoriasis susceptibility we meta-analysed 18 GWAS comprising 36,466 cases and 458,078 controls and identified 109 distinct psoriasis susceptibility loci, including 45 that have not been previously reported. These include susceptibility variants at loci in which the therapeutic targets IL17RA and AHR are encoded, and deleterious coding variants supporting potential new drug targets (including in STAP2, CPVL and POU2F3). We conducted a transcriptome-wide association study to identify regulatory effects of psoriasis susceptibility variants and cross-referenced these against single cell expression profiles in psoriasis-affected skin, highlighting roles for the transcriptional regulation of haematopoietic cell development and epigenetic modulation of interferon signalling in psoriasis pathobiology.

5.
Eur J Hum Genet ; 30(12): 1413-1422, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100708

RESUMO

Hereditary chronic kidney disease (CKD) appears to be more frequent than the clinical perception. Exome sequencing (ES) studies in CKD cohorts could identify pathogenic variants in ~10% of individuals. Tubulointerstitial kidney diseases, showing no typical clinical/histologic finding but tubulointerstitial fibrosis, are particularly difficult to diagnose. We used a targeted panel (29 genes) and MUC1-SNaPshot to sequence 271 DNAs, selected in defined disease entities and age cutoffs from 5217 individuals in the German Chronic Kidney Disease cohort. We identified 33 pathogenic variants. Of these 27 (81.8%) were in COL4A3/4/5, the largest group being 15 COL4A5 variants with nine unrelated individuals carrying c.1871G>A, p.(Gly624Asp). We found three cysteine variants in UMOD, a novel missense and a novel splice variant in HNF1B and the homoplastic MTTF variant m.616T>C. Copy-number analysis identified a heterozygous COL4A5 deletion, and a HNF1B duplication/deletion, respectively. Overall, pathogenic variants were present in 12.5% (34/271) and variants of unknown significance in 9.6% (26/271) of selected individuals. Bioinformatic predictions paired with gold standard diagnostics for MUC1 (SNaPshot) could not identify the typical cytosine duplication ("c.428dupC") in any individual, implying that ADTKD-MUC1 is rare. Our study shows that >10% of selected individuals carry disease-causing variants in genes partly associated with tubulointerstitial kidney diseases. COL4A3/4/5 genes constitute the largest fraction, implying they are regularly overlooked using clinical Alport syndrome criteria and displaying the existence of phenocopies. We identified variants easily missed by some ES pipelines. The clinical filtering criteria applied enriched for an underlying genetic disorder.


Assuntos
Nefrite Hereditária , Nefrite Intersticial , Insuficiência Renal Crônica , Humanos , Prevalência , Nefrite Hereditária/genética , Nefrite Intersticial/epidemiologia , Nefrite Intersticial/genética , Nefrite Intersticial/diagnóstico , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Mutação
6.
JBMR Plus ; 6(7): e10631, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35866155

RESUMO

Bone turnover is finely tuned by cells in the bone milieu, including osteoblasts, osteoclasts, and osteocytes. Osteoclasts are multinucleated giant cells with a bone-resorbing function that play a critical role in regulating skeletal homeostasis. Osteoclast differentiation is characterized by dramatic changes in morphology and gene expression following receptor activator of nuclear factor-kappa-Β ligand (RANKL) stimulation. We performed single-cell RNA-sequencing analyses of human and murine osteoclast-lineage cells (OLCs) and found that OLCs in the mitotic phase do not differentiate into mature osteoclasts. We also identified a guanosine triphosphatase (GTPase) family member, RAB38, as a highly expressed molecule in both human and murine osteoclast clusters; RAB38 gene expression is associated with dynamic changes in histone modification and transcriptional regulation. Silencing Rab38 expression by using short hairpin RNA (shRNA) inhibited osteoclast differentiation and maturation. In summary, we established an integrated fate map of human and murine osteoclastogenesis; this will help identify therapeutic targets in bone diseases. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
Kidney Int ; 102(2): 405-420, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643372

RESUMO

Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD) is caused by mutations in one of at least five genes and leads to kidney failure usually in mid adulthood. Throughout the literature, variable numbers of families have been reported, where no mutation can be found and therefore termed ADTKD-not otherwise specified. Here, we aim to clarify the genetic cause of their diseases in our ADTKD registry. Sequencing for all known ADTKD genes was performed, followed by SNaPshot minisequencing for the dupC (an additional cytosine within a stretch of seven cytosines) mutation of MUC1. A virtual panel containing 560 genes reported in the context of kidney disease (nephrome) and exome sequencing were then analyzed sequentially. Variants were validated and tested for segregation. In 29 of the 45 registry families, mutations in known ADTKD genes were found, mostly in MUC1. Sixteen families could then be termed ADTKD-not otherwise specified, of which nine showed diagnostic variants in the nephrome (four in COL4A5, two in INF2 and one each in COL4A4, PAX2, SALL1 and PKD2). In the other seven families, exome sequencing analysis yielded potential disease associated variants in novel candidate genes for ADTKD; evaluated by database analyses and genome-wide association studies. For the great majority of our ADTKD registry we were able to reach a molecular genetic diagnosis. However, a small number of families are indeed affected by diseases classically described as a glomerular entity. Thus, incomplete clinical phenotyping and atypical clinical presentation may have led to the classification of ADTKD. The identified novel candidate genes by exome sequencing will require further functional validation.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Adulto , Testes Genéticos , Estudo de Associação Genômica Ampla , Humanos , Mutação , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/genética
8.
Eur J Med Genet ; 65(5): 104492, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35339718

RESUMO

Steroid 5α-reductase type 3 congenital disorder of glycosylation (SRD5A3-CDG) is a rare metabolic disease mainly characterized by psychomotor disability, visual impairment, and variable eye malformations caused by bi-allelic pathogenic variants in SRD5A3. So far, only 23 distinct mutations were described. Exome sequencing in 32-year old monozygotic male twins revealed only the heterozygous splice variant c.562+3delG in SRD5A3, but no second variant. The twins presented with psychomotor deficit and a complex eye disease including retinal dystrophy, pallor of the papilla, nystagmus, and strabismus suggestive of SRD5A3-CDG. Only when applying exome-based copy number analysis, we identified as a second compound heterozygous variant a previously not reported tandem duplication of exons 2-4 in SRD5A3. Next to the typical skeletal anomalies of SRD5A3-CDG such as kyphosis and scoliosis, extension deficits of the proximal interphalangeal (PIP) joints IV were observed. Since similar contractures were described once in a patient with SRD5A3-CDG, we suggest that this rare symptom is possibly associated with SRD5A3-CDG. Our findings further expand the mutational and clinical spectrum of SRD5A3-CDG and emphasize the importance of an intragenic copy number analysis in patients with strong clinical suspicion of SRD5A3-CDG and only one detectable sequence variant.


Assuntos
Defeitos Congênitos da Glicosilação , Distrofias Retinianas , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Adulto , Defeitos Congênitos da Glicosilação/patologia , Exoma , Humanos , Masculino , Proteínas de Membrana/genética , Mutação , Distrofias Retinianas/genética
9.
J Invest Dermatol ; 142(8): 2149-2158.e10, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34973310

RESUMO

Generalized pustular psoriasis is a severe psoriatic subtype characterized by epidermal neutrophil infiltration. Although variants in IL36RN and MPO have been shown to affect immune cells, a systematic analysis of neutrophils and PBMC subsets and their differential gene expression dependent on MPO genotypes was not performed yet. We assessed the transcriptomes of MPO-deficient patients using single-cell RNA sequencing of PBMCs and RNA sequencing of neutrophils in a stable disease state. Cell-type annotation by multimodal reference mapping of single-cell RNA-sequencing data was verified by flow cytometry of surface and intracellular markers; the proportions of CD4+ cytotoxic T lymphocytes and other CD4+ effector cells were increased in generalized pustular psoriasis, whereas the frequencies of naïve CD4+ T cells were significantly lower. The expression of FGFBP2 marking CD4+ cytotoxic T lymphocytes and CD8+ effector memory T cells was elevated in patients with generalized pustular psoriasis with disease-contributing variants compared with that in noncarriers (P = 0.0015). In neutrophils, differentially expressed genes were significantly enriched in genes of the classical complement activation pathway. Future studies assessing affected cell types and pathways will show their contribution to generalized pustular psoriasis's pathogenesis and indicate whether findings can be transferred to the acute epidermal situation and whether depletion or inactivation of CD4+ cytotoxic T lymphocytes may be a reasonable therapeutic approach.


Assuntos
Peroxidase , Psoríase , Dermatopatias Vesiculobolhosas , Transcriptoma , Doença Aguda , Linfócitos T CD4-Positivos/patologia , Doença Crônica , Humanos , Leucócitos Mononucleares/patologia , Peroxidase/deficiência , Psoríase/patologia , Dermatopatias Vesiculobolhosas/patologia , Linfócitos T Citotóxicos
10.
Am J Med Genet A ; 188(1): 292-297, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533271

RESUMO

Cohen-Gibson syndrome is a rare genetic disorder, characterized by fetal or early childhood overgrowth and mild to severe intellectual disability. It is caused by heterozygous aberrations in EED, which encodes an evolutionary conserved polycomb group (PcG) protein that forms the polycomb repressive complex-2 (PRC2) together with EZH2, SUZ12, and RBBP7/4. In total, 11 affected individuals with heterozygous pathogenic variants in EED were reported, so far. All variants affect a few key residues within the EED WD40 repeat domain. By trio exome sequencing, we identified the heterozygous missense variant c.581A > G, p.(Asn194Ser) in exon 6 of the EED-gene in an individual with moderate intellectual disability, overgrowth, and epilepsy. The same pathogenic variant was detected in 2 of the 11 previously reported cases. Epilepsy, however, was only diagnosed in one other individual with Cohen-Gibson syndrome before. Our findings further confirm that the WD40 repeat domain represents a mutational hotspot; they also expand the clinical spectrum of Cohen-Gibson syndrome and highlight the clinical variability even in individuals with the same pathogenic variant. Furthermore, they indicate a possible association between Cohen-Gibson syndrome and epilepsy.


Assuntos
Epilepsia , Deficiência Intelectual , Pré-Escolar , Epilepsia/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Complexo Repressor Polycomb 2/genética , Sequenciamento do Exoma
11.
Cells ; 10(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34831225

RESUMO

Understanding seizure development requires an integrated knowledge of different scales of organization of epileptic networks. We developed a model of "epilepsy-in-a-dish" based on dissociated primary neuronal cells from neonatal rat hippocampus. We demonstrate how a single application of glutamate stimulated neurons to generate spontaneous synchronous spiking activity with further progression into spontaneous seizure-like events after a distinct latency period. By computational analysis, we compared the observed neuronal activity in vitro with intracranial electroencephalography (EEG) data recorded from epilepsy patients and identified strong similarities, including a related sequence of events with defined onset, progression, and termination. Next, a link between the neurophysiological changes with network composition and cellular structure down to molecular changes was established. Temporal development of epileptiform network activity correlated with increased neurite outgrowth and altered branching, increased ratio of glutamatergic over GABAergic synapses, and loss of calbindin-positive interneurons, as well as genome-wide alterations in DNA methylation. Differentially methylated genes were engaged in various cellular activities related to cellular structure, intracellular signaling, and regulation of gene expression. Our data provide evidence that a single short-term excess of glutamate is sufficient to induce a cascade of events covering different scales from molecule- to network-level, all of which jointly contribute to seizure development.


Assuntos
Encéfalo/patologia , Epilepsia/patologia , Modelos Biológicos , Neurônios/patologia , Animais , Calbindinas/metabolismo , Cálcio/metabolismo , Células Cultivadas , Metilação de DNA/genética , Epigênese Genética , Epilepsia/genética , Neurônios GABAérgicos/patologia , Redes Reguladoras de Genes , Neurônios/metabolismo , Análise de Componente Principal , Ratos , Fatores de Tempo
12.
J Clin Endocrinol Metab ; 106(12): 3413-3427, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34383079

RESUMO

CONTEXT: CPE encodes carboxypeptidase E, an enzyme that converts proneuropeptides and propeptide hormones to bioactive forms. It is widely expressed in the endocrine and central nervous system. To date, 4 individuals from 2 families with core clinical features including morbid obesity, neurodevelopmental delay, and hypogonadotropic hypogonadism, harboring biallelic loss-of-function (LoF) CPE variants, have been reported. OBJECTIVE: We describe 4 affected individuals from 3 unrelated consanguineous families, 2 siblings of Syrian, 1 of Egyptian, and 1 of Pakistani descent, all harboring novel homozygous CPE LoF variants. METHODS: After excluding Prader-Willi syndrome (PWS), exome sequencing was performed in both Syrian siblings. The variants identified in the other 2 individuals were reported as research variants in a large-scale exome study and in the ClinVar database. Computational modeling of all possible missense alterations allowed assessing CPE tolerance to missense variants. RESULTS: All affected individuals were severely obese with neurodevelopmental delay and other endocrine anomalies. Three individuals from 2 families shared the same CPE homozygous truncating variant c.361C > T, p.(Arg121*), while the fourth carried the c.994del, p.(Ser333Alafs*22) variant. Comparison of clinical features with previously described cases and standardization according to the Human Phenotype Ontology terms indicated a recognizable clinical phenotype, which we termed Blakemore-Durmaz-Vasileiou (BDV) syndrome. Computational analysis indicated high conservation of CPE domains and intolerance to missense changes. CONCLUSION: Biallelic truncating CPE variants are associated with BDV syndrome, a clinically recognizable monogenic recessive syndrome with childhood-onset obesity, neurodevelopmental delay, hypogonadotropic hypogonadism, and hypothyroidism. BDV syndrome resembles PWS. Our findings suggest missense variants may also be clinically relevant.


Assuntos
Carboxipeptidase H/genética , Hipogonadismo/patologia , Hipotireoidismo/patologia , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/patologia , Obesidade/patologia , Síndrome de Prader-Willi/diagnóstico , Adolescente , Alelos , Criança , Feminino , Humanos , Hipogonadismo/genética , Hipotireoidismo/genética , Recém-Nascido , Masculino , Transtornos do Neurodesenvolvimento/genética , Obesidade/genética , Linhagem , Prognóstico , Síndrome
14.
Orphanet J Rare Dis ; 16(1): 136, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736665

RESUMO

BACKGROUND: An identical homozygous missense variant in EIF3F, identified through a large-scale genome-wide sequencing approach, was reported as causative in nine individuals with a neurodevelopmental disorder, characterized by variable intellectual disability, epilepsy, behavioral problems and sensorineural hearing-loss. To refine the phenotypic and molecular spectrum of EIF3F-related neurodevelopmental disorder, we examined independent patients. RESULTS: 21 patients were homozygous and one compound heterozygous for c.694T>G/p.(Phe232Val) in EIF3F. Haplotype analyses in 15 families suggested that c.694T>G/p.(Phe232Val) was a founder variant. All affected individuals had developmental delays including delayed speech development. About half of the affected individuals had behavioral problems, altered muscular tone, hearing loss, and short stature. Moreover, this study suggests that microcephaly, reduced sensitivity to pain, cleft lip/palate, gastrointestinal symptoms and ophthalmological symptoms are part of the phenotypic spectrum. Minor dysmorphic features were observed, although neither the individuals' facial nor general appearance were obviously distinctive. Symptoms in the compound heterozygous individual with an additional truncating variant were at the severe end of the spectrum in regard to motor milestones, speech delay, organic problems and pre- and postnatal growth of body and head, suggesting some genotype-phenotype correlation. CONCLUSIONS: Our study refines the phenotypic and expands the molecular spectrum of EIF3F-related syndromic neurodevelopmental disorder.


Assuntos
Fenda Labial , Fissura Palatina , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Fator de Iniciação 3 em Eucariotos , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética
15.
Nat Commun ; 12(1): 1258, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627673

RESUMO

Primary open-angle glaucoma (POAG), is a heritable common cause of blindness world-wide. To identify risk loci, we conduct a large multi-ethnic meta-analysis of genome-wide association studies on a total of 34,179 cases and 349,321 controls, identifying 44 previously unreported risk loci and confirming 83 loci that were previously known. The majority of loci have broadly consistent effects across European, Asian and African ancestries. Cross-ancestry data improve fine-mapping of causal variants for several loci. Integration of multiple lines of genetic evidence support the functional relevance of the identified POAG risk loci and highlight potential contributions of several genes to POAG pathogenesis, including SVEP1, RERE, VCAM1, ZNF638, CLIC5, SLC2A12, YAP1, MXRA5, and SMAD6. Several drug compounds targeting POAG risk genes may be potential glaucoma therapeutic candidates.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Glaucoma de Ângulo Aberto/genética , Povo Asiático , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , População Branca
17.
Theranostics ; 11(3): 1412-1428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391542

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs). Methods: Since the activation and maturation of DCs is controlled by an interconnected signalling network, we deploy an approach that combines RNA sequencing data and systems biology methods to delineate miRNA-based strategies that enhance DC-elicited immune responses. Results: Through RNA sequencing of IKKß-matured DCs that are currently being tested in a clinical trial on therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a network analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as cytokine and interleukin signalling. We employed a network topology-oriented scoring model to rank the miRNAs, analysed their impact on immunogenic potency of DCs, and identified dozens of promising miRNA candidates, with miR-15a and miR-16 as the top ones. The results of our analysis are presented in a database that constitutes a tool to identify DC-relevant miRNA-gene interactions with therapeutic potential (https://www.synmirapy.net/dc-optimization). Conclusions: Our approach enables the systematic analysis and identification of functional miRNA-gene interactions that can be experimentally tested for improving DC immunogenic potency.


Assuntos
Células Dendríticas/imunologia , Neoplasias/imunologia , Neoplasias/terapia , RNA não Traduzido/imunologia , Imunidade Adaptativa/imunologia , Vacinas Anticâncer/imunologia , Células Cultivadas , Citocinas/imunologia , Humanos , Quinase I-kappa B/imunologia , Imunoterapia/métodos , MicroRNAs/imunologia , Transdução de Sinais/imunologia
18.
Am J Hum Genet ; 107(3): 527-538, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32758447

RESUMO

Generalized pustular psoriasis (GPP) is a severe multi-systemic inflammatory disease characterized by neutrophilic pustulosis and triggered by pro-inflammatory IL-36 cytokines in skin. While 19%-41% of affected individuals harbor bi-allelic mutations in IL36RN, the genetic cause is not known in most cases. To identify and characterize new pathways involved in the pathogenesis of GPP, we performed whole-exome sequencing in 31 individuals with GPP and demonstrated effects of mutations in MPO encoding the neutrophilic enzyme myeloperoxidase (MPO). We discovered eight MPO mutations resulting in MPO -deficiency in neutrophils and monocytes. MPO mutations, primarily those resulting in complete MPO deficiency, cumulatively associated with GPP (p = 1.85E-08; OR = 6.47). The number of mutant MPO alleles significantly differed between 82 affected individuals and >4,900 control subjects (p = 1.04E-09); this effect was stronger when including IL36RN mutations (1.48E-13) and correlated with a younger age of onset (p = 0.0018). The activity of four proteases, previously implicated as activating enzymes of IL-36 precursors, correlated with MPO deficiency. Phorbol-myristate-acetate-induced formation of neutrophil extracellular traps (NETs) was reduced in affected cells (p = 0.015), and phagocytosis assays in MPO-deficient mice and human cells revealed altered neutrophil function and impaired clearance of neutrophils by monocytes (efferocytosis) allowing prolonged neutrophil persistence in inflammatory skin. MPO mutations contribute significantly to GPP's pathogenesis. We implicate MPO as an inflammatory modulator in humans that regulates protease activity and NET formation and modifies efferocytosis. Our findings indicate possible implications for the application of MPO inhibitors in cardiovascular diseases. MPO and affected pathways represent attractive targets for inducing resolution of inflammation in neutrophil-mediated skin diseases.


Assuntos
Inflamação/genética , Interleucinas/genética , Peroxidase/genética , Psoríase/genética , Dermatopatias/genética , Adulto , Animais , Citocinas/genética , Armadilhas Extracelulares/genética , Feminino , Humanos , Inflamação/patologia , Interleucina-1/genética , Interleucinas/metabolismo , Masculino , Camundongos , Mutação/genética , Neutrófilos/metabolismo , Psoríase/patologia , Doenças Raras/enzimologia , Doenças Raras/genética , Doenças Raras/patologia , Pele/enzimologia , Pele/patologia , Dermatopatias/patologia
19.
Eur J Med Genet ; 63(9): 103998, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32622959

RESUMO

Autosomal-recessive spinocerebellar ataxia type 18 (SCAR18) is a rare neurologic disorder. It is caused by bi-allelic aberrations in the GRID2 gene, encoding an ionotropic glutamate receptor. In total, 20 affected individuals with mainly homozygous/compound heterozygous intragenic deletions/duplications, two different missense variants and one nonsense variant in GRID2 have been reported, so far. SCAR18 is characterized by delayed psychomotor development, intellectual disability, severely impaired gait due to cerebellar ataxia, ocular movement abnormalities, and cerebellar atrophy in brain imaging. By trio exome sequencing, we now identified a novel homozygous nonsense variant (c.568C > T; p.Gln190*) in GRID2 in a four year old female from a consanguineous family who presented with a particularly severe manifestation of SCAR18. The girl was born after an uneventful pregnancy and showed early-onset, profoundly delayed psychomotor development with no achieved psychomotor milestones at age 4 years. Additionally, she presented with severe muscular hypotonia, progressive truncal and appendicular ataxia, binocular vertical nystagmus, central hearing loss and incomplete loss of sight. She was dystrophic, interacted only very little and had behavioral anomalies such as eating hair and bruxism. Brain imaging showed cerebellar hypoplasia, extended cerebrospinal fluid spaces and beginning reduction of cerebral volume. Our findings further delineate the mutational and clinical spectrum of GRID2-associated spinocerebellar ataxia type 18 and indicate that homozygous nonsense variants are possibly associated with the severe end of the SCAR18 phenotypic spectrum.


Assuntos
Códon sem Sentido , Receptores de Glutamato/genética , Degenerações Espinocerebelares/genética , Pré-Escolar , Feminino , Humanos , Degenerações Espinocerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...